skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.

Attention:

The NSF Public Access Repository (PAR) system and access will be unavailable from 10:00 PM ET on Friday, February 6 until 10:00 AM ET on Saturday, February 7 due to maintenance. We apologize for the inconvenience.


Search for: All records

Creators/Authors contains: "Sun, Binqi"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. To design performant, expressive, and reliable cyber-physical systems (CPSs), researchers extensively perform quasi-static scheduling for concurrent models of computation (MoCs) on multi-core hardware. However, these quasi-static scheduling approaches are developed independently for their corresponding MoCs, despite commonality in the approaches. To help generalize the use of quasi-static scheduling to new and emerging MoCs, this article proposes aunifiedapproach for a class of deterministic timed concurrent models (DTCMs), including prominent models such as synchronous dataflow (SDF), Boolean-controlled dataflow (BDF), scenario-aware dataflow (SADF), and Logical Execution Time (LET). In contrast to scheduling techniques tailored exclusively to specific MoCs, our unified approach leverages a commonintermediateformalism called state space finite automata (SSFA), bridging the gap between high-level MoCs and executable schedules. Once identified as DTCMs, new MoCs can directly adopt SSFA-based scheduling, significantly easing adoption. We show that quasi-static schedules facilitated by SSFA are provably free from timing anomalies and enable straightforward worst-case makespan analysis. We demonstrate the approach using the reactor model—an emerging discrete-event MoC—programmed using the Lingua Franca (LF) language. Experiments show that quasi-statically scheduledLFprograms exhibit lower runtime overhead compared to the dynamically scheduledLFprograms, and that the analyzable worst-case makespans enable compile-time deadline checking. 
    more » « less